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HADRONIC FORM FACTORS:
PERTURBATIVE QCD vs QCD SUM RULES ~*

A.V.RADYUSHKIN

Continuous Electron Beam Accelerator Facility
12000 Jefferson Avenue, Newport News, VA 23606
and ,
Laboratory of Theoretical Physics, JINR, Dubna, USSR

Abstract

The challenging problem of applicability of the perturbative QCD to exclusive pro-
cesses is reviewed. The basic ingredients both of the asymptotic large-Q? analysis and of
the QCD sum rule approach are analyzed for the simplest and most well-studied example
of the pion electromagnetic form factor. The main conclusion is that for accessible en-
ergies and momentum transfers the soft (nonperturbative) contributions dominate over
those due to the hard quark rescattering subprocesses.

* Plenary talk at the Second European Workshop “Hadronic Physics with Electrons Beyond 10 GeV" (Dour-
dan, France, 8-12 October 1990), to be published in the Proceedings



1. INTRODUCTION

Elastic formn factors for many years have been a subject of very intensive studies ~ both
experimental and theoretical. The reason is that they contain an important information
about the internal structure of the “elementary” particles. In the nonrelativistic quantum
mechanics, e.g., the form factor is just the Fourier transform of the charge distribution inside
a system. In the (light-cone) quantum field theory, the form factor of a two-body bound state
is given by a convolution

F(q") ~ f'l‘P(r, ki) ¥p(z kL + zq)‘dzk;dx (1)

involving initial and final state wave functions. If g, the momentum transfer to the system, is
large enough, studying the form factor one can extract information about the high-k, behavior
of the bound state wave function. This is especially important in quantum chromodynamics
where the wave functions accumulate nonperturbative information about the hadronic struc-
ture. In particular, the low-k, part of the wave function dominated by soft interactions -
o8t (z,k, ) ~ cannot be calculated in any perturbative way.
However, a crucial observation made at the end of 70's [1, 2, 3, 4] is that the high-k; tail,

(to be referred to as ¥ %(z, kL)) can be calculated within the perturbative QCD approach:

;ard -~ V@tlj;:ﬂ, (2)

with V being the perturbative kernel describing short-distance interactions. The kernel starts
with the one-gluon exchange term, but includes also the higher order ones. Displaying v as a
suin of the soft and hard components

¢ = ¢|oft + ¢r’“‘"d (3)

and assuming eq. (2), one arrives at the QCD factorization expansion [5]. It states essentially
that the pion form factor, e.g., can be represented as a sum of terms of increasing complexity
(fig-1).

The first term (purely soft contribution, fig.1a) contains no short-distance (SD) subpro-
cesses. For large Q? it vanishes like 1/Q* or faster. The second term (fig.1b) contains a
hard gluon exchange and behaves like O(a,/Q?) for large Q. There are also corrections to
the hard term: higher order corrections (fig.1c) containing extra a, factors and higher twist
O((@,]Q?)( M?/Q?)") corrections (fig.1d). Thus, the perturbatively calculable one-gluon-
exchange diagram asymptotically dominates over all other contributions, and one can apply
perturbative QCD to study the large-Q? behaviour of hadronic form factors. ,

It is worth mentioning here that perturbative QCD is now the main theoretical tool to
describe hard hadronic processes. Factorization theorems formulated at the end of 70's {and
more carefully investigated during the 80's) ensure that, for a sufficiently large momentum
transfer Q, one can separate the factors describing the long-distance (nonperturbative) quark-
gluon interactions from the amplitudes corresponding to the short-distance subprocesses, the
latter being calculable within perturbation theory. This approach is especially successful for



Fig.1 Structure of factorization for the pion form factor

hard inclusive (deeply inelastic) hadronic processes where the QCD parton picture is now the
most popular way of describing them.

For exclusive processes, however, the situation is much worse. Though the perturbative
QCD is undoubtedly an adequate tool to study the asymptotic Q* — oo behavior of the
hard exclusive reactions, there is still no agreement about whether the accessible momentum
transfers Q < 6 GeV are large enough to be treated as the asymptotic ones. In fact, one can
find in the literature two opposite viewpoints concerning this problem (compare, e.g., refs.[6, 7]
and [8, 9]). My goal in this talk is to discuss the problem of applicability of the perturbative
QCD predictions for exclusive processes. 1 will concentrate on the simplest and most studied
example of the pion eleciromagnetic form factor to demonstrate the basic ingredients of both
perturbative and semi-perturbative (within the QCD sum rule method [10]) approaches to
exclusive processes in QCD. We will also briefly discuss some more complicated processes.

2. PERTURBATIVE QCD FOR EXCLUSIVE PROCESSES:
THE PION FORM FACTOR

The first result of perturbative QCD for exclusive processes is the prediction for the asymptoti
behavior of the pion electromagnetic form factor 1, 2, 3, 4]:

FA@) = [ de [ 4y 29’

3zyQ?

wl(z} wly) (4



where @(z) is the pion wave function giving the probability amplitude to find the pion in & state
where quarks carry fractions P and (1 — z)P of its longitudinal momentum P; ¢ = P' — P
is the momentum transfer to the pion, ¢? = —Q* < 0; the combination

zyQ* = —(zP - yP')* = -k

is the virtuality of the exchanged gluon (fig.2) and g is the quark-gluon coupling constant.
This formula provides the QCD justification for the quark counting rules [11, 12]

F(Q%) ~ (/@Y (5)

in the pion {(n = 2) case.

04
| q=p'-p Ng’ 03
% 02
> @"@— | 50.1
xP yp’ 00" ff, —
62 (Gev?)

Fig.2 Structure of the leading high-Q? Fig.3 Experimental data on Q?F.(Q?)
contribution to the pion form factor. and the asymptotic QCD prediction.

Thete are also higher order corrections to the short-distance quark rescattering amplitude.
In particular, they induce a logarithmic Q?-dependence both of the running QCD coupling
constant &, — a,(Q?) and of the wave functions: (z) — ¢(z, @?). The latter effect is similar
to the scaling violation for the parton distribution functions. In the asymptotic Q% — oo limit
the pion wave function acquires a very simple and natural form (5, 4, 6)

Px(z, Q: — 00) — e (z) = 6frz(l - z), (6)

where f, = 133MeV is the pion decay constant setting the wave function normalization. Thus.
using eqs. {4) and (6) one gets the “absolute” prediction for the pion form factor (1, 2, 3, 4, 5. 6]

F2*(Q%) = 87, f3/Q°. (7)

However, if one calculates the numerical value of the “almost scaling” combination Q?F,{(Q?)
taking for o, the standard low-Q* value o, = 0.3, one finds that Q2F2*(Q?) = 0.13 - the
result by factor of 3 lower than the experimental [13] one.

3



The simplest idea then is that a, is in fact larger. One can even insist that the asymptotic

freedom formula
4

2 A ——ee e

() = Siogi@ A

should be used. In this case, however, the curve Q*F2*(Q?) = 87 f?a,(@?) is almost orthogonal

to the curve Q?F:=P(Q?), the intersection being only one point around Q? = 1GeVZif A ~
100 — 200 MeV (fig.3). |

A popular way (see, e.g., refs.[14, 15]) to avoid the rapid variation of the a,(Q?) is to
assume that a,(Q?) in fact “freezes” for low Q%:

(8)

2 — frozen 2y 4n
ar(@?) = al™™(@?) = Gy AT (9)

with g being a scale of the order of several hundreds MeV. In this case o,(Q?) is almost
constant. Note also, that the argument of o, in our case should be proportional, but not
necessarily equal to Q@*. A more relevant scale is zyQ? - the virtuality of the exchanged gluon
(see, e.g., [16]). But with o, — a,(zyQ?) one gets into much trouble with the region of small
z and y unless the effective coupling constant o, (Q?) is frozen, and this is another motivation
for using eq. (9).

To understand the mechanism of the freezing one should notice that, due to the nonpertur-
bative effects, the gluons inside the loops inducing the Q?-dependence of a, acquire an effective
mass m, in the low momentum region. In other words, the gluonic propagators are modified:
1/12 — 1/(I* —m}) and one obtains something like log(Q@? + 4m?) instead of log(Q?) in eq.(8).
Such a modification is very natural in view of the confinement phenomenon: there are no
gluons whose wavelength is larger than the confinement radius Rons and this is equivalent to
a strong suppression for the propagation of particles with small momenta.

Since a,(Q?), in any case, varies slowly only if it is small (a, < 0.3), one still needs a
factor of 3 to describe the data by eq.(4). The only way now is to assume that the pion wave
function ¢{z, Q?) for low Q7 strongly differs from its asymptotic form ¢**(z). Referring to the
QCD sum rules for the second and the fourth moments of the pion wave function, Chernyak
and A.Zhitnitsky argued that [17]

¢C2(z) = 30f,z(1 — z)(1 — 2z)°. (10)

The use of the double-humped CZ wave function increases the result by factor 25/9 compared
to the asymptotic prediction (7).

Sumunarizing, to describe the data by eq. (4) one should take the CZ form for () and
a, of order of 0.3. To avoid an increase of the combination Q2F,(Q?) for small Q* (where
experimentally it goes down), one should use a frozen version, eq. (9), for the QCD coupling
constant [15]. The same procedure was used |14] for the proton magnetic form factor. The
relevant wave functions ¢(z, 2, T3), due to Chernyak and I.Zhitnitsky [18] also have huinps
and are highly asymmetric with respect to z,, 72, 7. Using them one can get curves for
2,(Q?) close to experimental data.



Still, there is a highly disturbing observation concerning the above “successes” of the
asymptotic QCD predictions: the bulk part of the relevant contributions comes from the re-
gions where the virtualities of the exchanged gluons (zyQ? in the pion case) are not very
large [9]. One can easily verify that, with the CZ wave function, 50% of the whole contri-
bution is due to the regions where both z and y are smaller than 0.2 (zyQ? smaller than
Q?/25, i..,smaller than 0.15 GeV? for QF < 4GeV?!) and 40% is due to the regions where
either = or y is smaller than 0.2. Only 1.5% of the total contribution comes from the region,
where both = and y are larger than 1/2 and one can treat the exchanged gluon as sufficiently
virtual to rely on asymptotic freedom. More than 90% is due to the regions of small virtualities
where the free-field approximation D(k?) ~ 1/k?* is more than questionable. As we discussed
above, one should expect that for small k? the propagator is modified

1/k? = 1/(k* = M?)

due to the confinement effects. Now, if one substitutes the denominator factors like zy@? by
(zyQ? + M?) with M ~ 300 — 500 MeV), one immediately observes that the resulting value for
Q?F,(Q?) is smaller than the experimental one by & factor of 10, both for the asymptotic and
CZ wave functions.

Such a sensitivity of the results to parameters like M (serving as an infrared cut-off)
simply means that we are outside the applicability region of perturbative QCD. Furthermore,
the basic principle of the whole factorization approach is that any contribution coming from a
region where |k?| < pd ~ 1GeV? cannot be treated as a short-distance subprocess: it should
be considered as a part of a soft (and, generally speaking, nonfactorizable) contribution.

As we discussed above, the pion form factor, according to the factorization theorem [5, 19],
is & sum of various terms (fig. 1). The soft contribution (fig.1a) dominates for small Q2. It is
this term that provides the normalization condition F(@% = 0) = 1. On the other hand, the
gluon exchange diagram dominates as Q? — oo. The crucial question is: where the asymplotic
regime sets in? To begin with, one should take into account that the hard gluon exchange
diagram 1b, according to the usual “loop counting” is suppressed by the a,/x = 1/10 factor.
On the other hand, the soft diagram is suppressed, in the large-@* region, by a power ol
M?/Q? with M being a typical hadronic scale of an order of 1 GeV. Thus, the two terins are
of comparable magnitude for

Q? ~ M*/(a,/x) ~ 10 M* ~ 10GeV"™.

The soft contribution seems to be dominant in the whole accessible Q2?-range, while the hard
term contributes only something like 10%)!

Applying the same estimate for the nucleons {in that case the asymptotically dominant
diagrams have two gluon exchanges) one derives that the soft diagram is more important for

0 < M?/(a,/7)* ~ 100 M* ~ 100 GeV?,

i.e., also up to Q? values not accessible experimentally.
Of course, there might be various estimates of the magnitude of “the typical hadronir
scale”. In particular, Brodsky argued {20] that the relevant scale M for the pion is fr which

5



is only 133 MeV and, hence, the soft diagram can be ignored above Q* ~ f2/(a./n) ~
(400 MeV')?. To demonstrate that the scale M is really much larger than f, (in fact, M ~ 27 fr)
one should be able to calculate the soft contribution in some reliable way.

3. QCD SUM RULES AND HADRONIC FORM FACTORS

Among the existing approaches to the analysis of the nonperturbative effects in QCD the most
close to perturbative QCD is the QCD sum rule method [10]. Let us formulate its basic ideas
within the context of our problem. '

It is evident that one cannot directly study the soft contribution with the on-shell pions,
because then only long distances are involved. But perturbative QCD can be applied in a
situation when all relevant momenta g, p;, p» are spacelike and sufficiently large: |¢%|, |p},
Ip?} > 1GeV? To describe the virtual pions one should use some interpolating field, the
usual (for the QCD sum rule practitioners) choice being the axial current jg& = dysy2u. Its
projection onto the pion state |P,x) is proportional to f, :

(0lj5|P,m) = if P7. (11)

Via the dispersion relation

1ope, [ pls1,92,9°)
T(p}, 2, q" =—j ds / ds; = 12)
R e I O CRE:] (
one can relate the amplitude T(p},p%, ¢°) to its time-like counterpart p(s1, s2,¢%) containing
the double pole term

pals1,92,8%) = w2 f28(s1 — m3)o(s2 — mI)F(Q7) (13)

corresponding to the pion form factor. However, the axial current has nonzero projections onto
other hadronic states {A;—meson, say) as well, and the spectral density o(31, $2,4%) contains
also the part phioher #ates(gy s, g%) related to other elastic and transition form factors. This is
the price for our going off the pion mass shell. The problem now is to pick out the Fir term
from the whole mess.

Of course, calculating T(p?,p3,¢%) in the lowest orders of perturbation theory one never
observes something like the pion pole: one obtains a smooth function pP"t(sq, $2,¢%) corre-
sponding to transitions between the free-quark id—states with invariant masses s; and s,
respectively. The difference between “exact” density p(s1,32,q%) and its perturbative analog
PP (81, 92,¢%) is reflected by additional nonperturbative contributions to T(p?.p}.q%). These
contributions are due to quark and gluon condensates {gq), (GG) efc., describing (and/or
parameterizing) the nontrivial structure of the QCD vacuum state. Formally, these terms
appear from the operator product expansion for the amplitude T(p?, p%, ¢%) (fig.4):

(GG, aulaa)®
TR

T(pf‘Pz,qZ)=Tpert(p$1p§,q2)+a +o (14)



]
+
+
+

P P P, P,

Fig.4 Structure of the operator product expansion for T(p?,p3.4%)

The problem now is to construct such a model of the spectral density p(sy, s2,¢%) which
gives the best agreement between two expressions for T' (egs. (12) and (14)). Naturally, having
only a few first terms of the 1/p> —expansion one can hope to reproduce only the gross features
of the hadronic spectrum in the relevant channel. S5till, just using the simple fact that the
condensate contributions die out for large p?, one obtains the global duality relation between
quark and hadronic densities

/om ds, fom dss; (p(.sl, 82,4°) — 7 (81, az,qz)) = 0. (15)

Approximating the higher states contribution into p(s1,82,¢°) by the free quark density (cf.
with the quasiclassical approximation hor high levels in quantum mechanics):

phieher states (g gy, q) = [1 — 8(s1 < 30)8(s2 < 30)] 78 (51, 82, 4°), (16)

with so being the effective threshold for the higher states production, one obtains the local
duality relation

1 2”0 10
FRQ) == [ do [7 dea 77 (o1, 00,47) (17)

A similar duality relation can be obtained from the analysis of the correlator of two axial
currents. In this case [10] p(s) = 8(s)/4r (see ref.{10]) and, hence, f? = so/4x®. Thus, the
duality interval s, for the pion can be fixed from the known experimental value of f :

s = An2f2 2 0.7GeV?. (18)

A more theoretical way is to use the standard values for the condensates [10] and extract
both g5 and f» from the requirement of the best agreement between two expressions for the
two-point analog of T. The result f, = 130 = 10MeV [10] is very close to the experimental
value. In the same way, assuming (16) one can extract fZF,(Q?) and so from eqgs. (12).(14)
and (13). The fact that the values of so obtained in this way are close to 0.7 GeV? [21, 22] 1<
an evidence for the sell-consistency of the whole approach.

Now, using the local duality relation (17), one can calculate Fnp{Q?} without any fre

parameter [22]
X 1 + 680/Q2
FFP(Q*) =1~ :

{19}

[



Note, that asymptotically one has
= Ot
Comparing this with the perturbative QCD asymptotic contribution
s 8ra, f2 230
FP Q)= —7Ff =5
Q* Q?
one can establish that the power damping factor for FIP(Q?) is

335/Q% = 12x2f2/Q? ~ 2GeV?/Q?,

FEPQY) +0(1/Q°%).

S (20)

T

in agreement with our expectations that the relevant scale M should be of the order of 1 GeV.
Though F:°f{(Q?) behaves asymptotically like 1/Q%, in the accessible momentum transfer
region eq. (19) is in reasonable agreement with experimental data (see fig.5, solid line). Fur-
thermore, one can take into account in P73, 82,¢°) the O(a,) contribution containing the
asymptotically dominant hard gluon exchange term. The two-loop calculation is rather com-
plicated, but one can use a simple model based on the interpolation

L[ a4, [ dsrp VLI Y-
ﬂ'zf,f/o -31'/; 820077 (81, 82, ¢ ) &~ :1+Q2/280
between the Q? = 0 value (related by the Ward identity to the O{a,) term of the 2-point
correlator) and the asymptotic behavior. The resulting curve for Fr(Q?) is shown in fig.5
(dashed line).

Using the local quark-hadron duality relation of eq.(17) type, one can calculate also the
nucleon form factors. In particular, for the proton magnetic form factor the result is (23]

(21)

7AQ7) = SVIT-T{(4T* = 1(T7 - 1) + (4" - NTVTI=1} 7, (22)

where T = 1+ Q?/2s0 and the duality interval so for the nucleon is 2.3 GeV? [24]. Comparison
with experimental data of ref. [25] is shown in fig.6. The theoretical curve starts to deviate
from the data just in the region @ > 15GeV? where the O(a,/n)—contribution should be
visible. The latter is still not asymptotically dominant. The asymptotic term due to double-
gluon-exchange diagrams is suppressed by the O({a,/n)?) factor and should be taken into
account only for much higher Q2. '
The QCD sum rule method can be used even to calculate the hadronic form factors in
the low-Q? region, though the operator product expansion for T'(p?,p3.¢%) in this case is
more complicated [26] : there appear new nonperturbative terms related to the long-distance
propagation of quarks in the g-channel. These termns have the structure of a two-point
correlator and can be calculated from the relevant QCD sum rule. In this way the result
(r2}1/2 = (.66 £ 0.03 fm for the pion charge radius was obtained [27] in good agreement with
the experimental value. The low-Q? QCD sum rule for the pion form factor [27] works up to
Q? ~ m? = .6 Gel/? and matches well with the curves obtained from the analysis of the QCD
sum rule for the intermediate region 0.5 GeV? < Q* < 3GeV? performed in refs.[21, 22].

8
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Fig.5 Pion form factor. Fig.6 Proton magnetic form factor.

4. NONLOCAL CONDENSATES AND QCD SUM RULES FOR THE PION
FORM FACTOR AND PION WAVE FUNCTION

The above-mentioned QCD sum rule for the pion form factor at intermediate momentum

transfers

1 iy %0 er 8 + 92
f:Fr(Qz) = vaﬂ d'sl/; d-’z PP 1(31»32,‘12)33‘13 ("— Mz )
a,(GG) 16 ra,(dq)? 2Q°
12 M? 81 M+ 134 M? (23)

(this is its “Borelized” version (21, 22|, with p* — M?) cannot be used for Q* > 3 GeV2. This
is because the ratio of the condensate terms (which do not decrease with the growth of Q%) to
the perturbative term (going down as 1/Q*) becomes too large, t.e, the power series in 1/A{?
“explodes” , and one should sum up it in some way.

A similar problem arises if one studies the QUD sum rule for the {-moments (§ = 2z — 1)
of the pion wave function [6]

3M?

Ny _ a,{GG) | 18 7a,{gg)’
f2(€7) = 472 (N+1)(N+3)(1

127 M2 81 MH

e IMy (11 4+ 4N).  (24)

Here the perturbative term decreases like 1/N? for higher moments while the condensate terms
are either constant or even increasing with N. Thus, the effective scale in the channel (settled
by the ratio of the condensate terms to the perturbative one) substantially increases for N = 2,
4,... . As a result, the value of the combination f2(€?) extracted from this sum rule is by

9



factor 2 larger than that for the asymptotic wave function: F2(¢%)** = f2/5. Such a large value
{¢€?) = 0.4 can be attributed only to a wave function concentrated in the region || ~ 1, e.g.,
for the Chernyak-Zhitnitsky wave function (10) one has (€%) = 3/T ~ 0.43.

It is instructive to rewrite the sum rule (24) for the wave function itself:

IM? 2 (GG
Pont) = Mot - o)1 - o) 4 288 5(0) 4 501 - 2)

8 wa,(ch)z \ ' '
+-é-i——M—4—{11[6(:c)+6(1—-z)]+2[6 (z) + &1 — =)} (25)

The §~functions in eq.(25) just indicate that the vacuum quarks carry zero fraction of the
external momentum p. In the configuration representation this means that the nonlocal combi-
nation {§(z)g(0)} is approximated by the local condensate (§(0)g(0)), i.e., vacuum fluctuations
are assumed to have infinite correlation length. Such an approximation, though reasonable in
many cases, is not always good enough. In particular, it was shown [28] that higher moments
(N = 2, 4,...) of the pion wave function are rather sensitive to the width of the function
(§(z)q(0)}, i.e., to the average correlation length of the vacuum fluctuations, specified by the
ratio

N = (4D%9)/(q9). (26)

The numerical value of the parameter A?, having the meaning of the average virtuality of the

vacuum quarks is rather reliably determined from the QCD sum rules for the nucleon mass
(24

(aD%) = (3(o - G)q) /2 = {7q)(0.4GeV?). (27)

Note, that A? is comparable in magnitude to the parameter so = 0.7 GeV?, the latter being
the characteristic scale in the pion channel. Using for (3(z)q(0)) & model satisfying the above
constraint e.g., assuming the Gaussian form

(@(z)q(0)) = (dq) exp(2*A?/8), (28)

one can obtain a modified sum rule for ¢(z), with the &(z) and §(1 - z)—functions substituted

by terms like
z6(z < A1/2M*)/ M + {z = (1 - 2)}.

For = small {or close to 1) the latter have the same behavior as the perturbative contribution.
The value (¢2) = 0.25 obtained from that sum rule [28] is much closer to the asumptotic value
(€%)°* = 0.2 than to that of Chernyak and Zhitnitsky {¢2)°Z = 0.43. The simplest model wave
function with (§2) = 0.25 is

gp’:“"l(x) = %f,, (1 — ). (29)

If one prefers the expansion over the Gegenbauer polynomials C%/?(£) (the eigenfunctions of
the evolution equation [2, 4]), then the function with (%) =0.251s

T (z2) = 6 frz(l — z) (1 + g(l —5z(1 — z))) . (30)

10



Similar changes appear also in the QCD sum rule for the pion form factor: if one takes into
account the finite size of the vacuum fluctuations, then the condensate terms are decreasing
functions of Q2, and the resulting sum rule can be used up to Q% ~ 10GeV?. The curve for
F,(Q?) obtained in this way [29] goes slightly higher than the local duality prediction, eq.(11).

5. CONCLUSIONS

Let us now summarize the basic observations made above. First, we established that the
gluons taking part in the “hard” rescattering subprocesses have normally rather low momenta
|k| < 500 MeV, i.e., they are outside the asymptotic freedom region. This has two implications:
(a) a,(k?) could be large, and (b} one cannot be sure that the free-field approximation for the
gluonic propagator D(k?*) ~ 1/k? is reliable.

Advocates of the asymptotic formulas argue that e, is, in fact, small due to the freezing
phenomenon [7, 14, 15]. We agree, that such a phenomenon should have place, simply because
the propagation of the gluons in the low-k? region is strongly suppressed due to the confinement
effects. However, modifying the gluonic (and quark) propagators 1/k% — 1/(k* — M?) in loops
corresponding to radiative corrections, one should do the same for the original gluon of the
“hard” subprocess. Such a modification substantially decreases the results obtained from the
asymptotic formulas. In this situation the use of the wave functions a ¢ Chernyak-Zhitnitsky
is also of no help, because essential |k*|'s in this case are even smaller and the suppression due
to the 1/k? — 1/(k* — M?) change is much stronger.

Furthermore, the humpy form characteristic to the CZ-type wave functions is a mere con-
sequence of the approximation that vacuum quarks have zero momentum. This approximation
is good enough when one calculates fx, i.e., the integrated wave function, but if one wants
to get information concerning its form, one should know the momentum distribution of the
vacuumn quarks. In a realistic model of the QCD vacuum, with (|k3|)7e ~ 0.4GeV?, the
wave functions extracted from the QCD sum rules are very close to the asymptotic ones. This
statement agrees with the lattice result [30] showing no skewness in the proton wave function.

All this forces us to conclude that the gluon exchange contributions cannot describe existing
data in a theoretically convincing way, both in the pion and proton form factor cases.

Next step is to apply QCD sum rules for calculating soft contributions. This approach
gives a self-consistent theoretical picture for the pion form factor behaviour starting from
Q? = 0 up to Q> ~ 10 GeV'?, and the soft contribution dominates in the whole region. A good
description of the experimental data was obtained also for the proton form factor.

For more complicated processes like vy — n®,yy — pp, *p — %P, pp — PP: etc., the
asymptotically leading perturbative QCD contributions are suppressed by high powers of
(a,/7), e.g., by {a,/x)* for mp—scatiering and by (a,/n)° for pp—scattering and the deuteron
form factor. However, reliable QCD calculations in these cases are much more complicated.
Only for the deuteron form factor there was an attempt to calculate it using the QUD quark-
hadron duality prescription {31], though much more work still should be done here.

Thus, after more than ten years of theoretical investigations, we have a reliable QCD
description for only two simplest exclusive processes (er — er and ep — ep). Thisis a
pessimistic version of the statement. An optimist, however, can assert that from the analysis
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of the pion and proton form factors we now know how the pion and the proton behave in
exclusive reactions, and this gives us a reliable starting point and a correct direction towards a
complete QCD theory of exclusive processes in general and hadronic form factors in particular.
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